
Model-Based Reasoning for
The Knowledge From

N93-25978
System and Software Engineering
Pictures (KFP) Environment

Sidney Bailin, Frank Paterra, and Scott Henderson

CTA Incorporated*

Walt Truszkowski**

NASA/Goddard Space Flight Center

1. Introduction

This paper presents a discussion of current work in the area of graphical modeling and
model-based reasoning being undertaken by the Automation Technology Section, Code

522.3, at Goddard. The work was initially motivated by the growing realization that the
knowledge acquisition process was a major bottleneck in the generation of fault detection,
isolation, and repair (FDIR) systems for application in automated Mission Operations. As
with most research activities this work started out with a simple objective: to develop a

proof-of-concept system demonstrating that a draft rule-base for a FDIR system could be
automatically realized by reasoning from a graphical representation of the system to be
monitored. This work was called Knowledge From Pictures (KFP) (Truszkowski et. al.

1992). As the work has successfully progressed the KFP tool has become an
environment populated by a set of tools that support a more comprehensive approach to
model-based reasoning. This paper continues by giving an overview of the graphical

modeling objectives of the work, describing the three tools that now populate the KFP
environment, briefly presenting a discussion of related work in the field, and by
indicating future directions for the KFP environment.

2 Graphical Modeling as a Basis for Answering Questions: KFP Concept

By way of introducing the major concepts in the current KFP environment we describe an
approach to modeling a system that allows one to perform the following functions:

• Verify the correctness of a system design
• Simulate the behavior of a system
• Monitor the behavior of a system

Each of these functions amounts to answering certain questions about the system being
modeled. We therefore view verification, simulation, and monitoring as different forms of

querying a system model. In its current state of development, our models can be used to
answer the following types of questions:

1) Under what conditions will event E or state S occur? This can be asked at design time
for verification, or at run-time for explaining an observed event E or state S

(monitoring).

* Mailing address: CTA Incorporated, 6116 Executive Boulevard, Suite 800, Rockville, MD 20852.
E-mail: sbailin@cta.com, fpaterra@cta.com, scott@cta.com.

** Mailing address: NASA/Goddard Space Flight Center, Code 522, Greenbelt Road, Greenbelt, MD
20771. E-mail: wtruszkowski.520@postman.gsfc.nasa.gov.

189

2) What will occur as a consequence of state S and/or event E? This can be asked at
design time for verification, or during system testing (simulation).

3) Will state Sz occur as a consequence of state $1 and event E? This can be asked at

design time for verification, during system test (simulation), or at run-time to explain
the observation of state $2 (monitoring).

2.1 The Graphical Language

The modeling language represents a system as a set of components that are connected
together via input and output ports. Each component has a set of output ports, which
transmit information or physical resources (e.g., heat, power) to other components; and a
set of input ports, which receive such resources from the output ports of other components.
In addition, each component has an internal state, which is represented through one or
more stores or variables. A component may also contain sub-components, which in turn
are connected with each other. Thus, there is no conceptual difference between a system
and a component: a component is a system consisting of its sub-components, and any
system may be used as a component within a larger system.

For example, Figure 1 shows a model of the temperature control subsystem of a spacecraft
instrument. The purpose of this subsystem is to control the temperature of the lens. Heat
provided to the lens influences the temperature sensor, which in turn sends a digital
temperature signal to the temperature driver. The function of the temperature driver is to
turn the heater and cooler on and off as needed. The heater and cooler in turn influence the

lens by passing or reducing heat, respectively.

I
Power Delvery

ICoolerOverride
!

Enable Commlnd

i

HeaterOverride
!

Tomp Value

I

Temp Driver [

I

Power Delivery Input _._ i

I Heat Switch I

[Power Demand ,npu_ I Power Oelive r_ Output=.

I I

i--,," > icu . '
I I

ITemperature Sigrli' OutputS"

I I

Figure 1: Temperature Control Subsystem Model

190

Each component in the model has a behavior description that specifies how its intemal state
and outputs change in accordance with changing input (and its previous state). To describe
behaviors we use a tabular representation similar to that advocated by Parnas et al (1990).
The tabular form allows us to accommodate both continuous functions and discontinuities.

As Parnas observed, discontinuities are the major problem in specifying system behavior as
a mathematical function--functional expressions in mathematics are typically continuous.
At the other end of the continuous/discontinuous spectrum, a finite state machine is well-
suited to describing a discrete set of behaviors, but is not suited to specifying new states
and outputs as a continuous function of inputs and previous state.

The tabular representation is a blend of these two approaches. Each row in the table
represents a nominalized, or abstracted, state, within which the system's behavior may be
described as a continuous function of the current input and the specific (non-abstracted)
state. Different rows in the table correspond to different abstracted states, in which the
behavior is characterized by different functions. For example, the following table specifies
the behavior of the temperature driver in the model shown in Figure 1:

Table

Present State Influence

Idle T > MaxTemp

Idle T < MinTemp
CoolerOn T <= MaxTemp-Delta

HeaterOn T >= MinTemp+Delta

1: Behavior of Temperature Driver

Next State

CoolerOn

HeaterOn

Idle

Idle

Action

Set Cooler Signal

Set Heater Signal

Drop Cooler Signal

Drop Heater Signal

In this case the next-state and action functions are discrete-valued and are constant within

each row of the table. The input port of the temperature driver is, of course, real-valued,
but in the behavior table it is described in terms of three abstracted states:

T > MaxTemp, T < MinTemp, and (implicitly) MinTemp <= T <= MaxTemp

2.2 Querying the Models

Let us see how such models can be used to answer the types of questions posed above:

Under what conditions will event E or state S occur? To answer this we need to perform
backward chaining through the state transitions and connections described in the model.
We begin with the "fact" (whether hypothetical or observed) that event E or state S has
occurred. This is treated as a goal in our backward chaining search. Typically E or S will
describe the internal states and/or outputs of one or more components. We therefore look
for state transitions in these components that would result in E or S. Each of these
transitions will be predicated on a previously occurring internal state and input event.
These previous states and input events therefore become subgoals. Input events of one
component translate into output events of another component via the connections specified
in the model. Similarly, the internal states that were pre-conditions of E or S become
subgoals; they can be established by either assuming them as initial conditions, or tracing
them back via still earlier transitions to previous states.

What will occur as a consequence of state S and/or event E? Answering this requires that
we perform forward chaining through the state transitions and connections described in the
model. We being with the "fact" that the system is in state S and/or that event E has just
occurred, and we proceed to execute the state transitions that occur as a result (as specified

191

in the behavior description of the model). Values that occur at output ports must be
propagated over to whatever input ports they are connected to, and subsequent state
transitions must then be carried out. Forward chaining therefore amounts to "executing"
the model.

Will state Sz occur as a consequence of state $1 and event E? This type of question can be
addressed by either forward or backward chaining, and in both cases there is a possibility
of inconclusive results. We can execute the model starting with the occurrence of event E
in state St, and check for the system entering into state S2. If there is feedback in the
modelmLe., there is a cyclical connection between some components Cl -> C2 ... -> Ck
-> Clmit may not be possible to limit the execution time within which $2 must occur. We
can, alternatively, treat S2 as a goal in backward chaining, as in the f'trst type of query--
but with the additional constraint that the initial conditions arrived at must be consistent

with S1 and E. Here too, if there is feedback in the system, there is a possibility of infinite
regression. We can artificially limit such searches by placing a bound on the number of
transitions executed and the number of connections traversed. If the execution of

transitions and the flow of resources over connections are viewed as taking time, rather
than being instantaneous, then such a bound corresponds to a time limit within which S2 is
required to occur.

3 Tools for Querying the Models - the KFP Environment

In the KFP environment we have developed tools to provide answers to each of the types
of questions posed above. The Formal Interconnection Analysis Tool (FIAT) is intended
to be used for verifying designs. It performs backward chaining to answer questions (1)
and (3) at design time. The Multiple Aspect Simulation Tool (MAST) executes the models.
MAST can be viewed as a tool for simulating a model or, depending on the context, for
implementing the model as a software system. The Diagnostics Inferred from Graphics
(DIG) tool generates rules that backward chain through the model at run-time. DIG is
intended to be used for system monitoring. In this section we describe the user interface
through which the models are specified, and then show how FIAT, MAST, and DIG
process the models for their respective purposes.

3.1 The User Interface

Figure 2 shows the main selection panel of the environment. Operations for managing the
model library are provided within the Load and Save Libraries menu.. The Edit
Components menu brings up the editor with the selected component displayed, or with a
work space for creating of a new model.

_l System Component LJ_rar),] • I'1

Library Name:]

Defecto_

Digital Frocesfor

Electronics Cabinet

Focal Plane

;ommatad Processor

Load & Save Li'brariel [[Edit Comp tw [

Figure 2: KFP Main Selection Panel

192

Figure 3 shows the model editor with an example system defined. The components of the
system, shown as boxes, are CmdProcessor, DigitaIProcessor, Heat Relay, Heater,
Cooler, PowerSupply, and Sensor. Each component has ports, shown as large arrows.
Connections between ports are displayed as arcs. As shown in the figure, a menu
containing commands for editing and querying the model pops up in response to a middle-
button mouse click in any "white space" area of the diagram:

--7 7_

Electronics Cabinet.

I C_dProce_,sor

__w.. CaHbeet ton L_t

Cancel

Add input port

Add oU/l_Ut port

Edit variables

Describe behavior

Verify bahasdor

Reborn

tic$ P(_w_r _|tch

--]

ll

_--_Power Ikd|_,_ry _ [Po_erDeliv¢r_ Outpu)>_

I

I I

Figure 3: KFP Model Editor

193

The Describe Behavior selection is used to add, modify, or remove behavior states and

transitions of the currently displayed system. As shown in Figure 4, the Mappings panel
displays the state transitions that are currently defined. The Transition panel enables the
user to modify an existing transition description, or to create a new one.

The Starting State is the state that the object is in before the transition occurs. The Trigger
is the variable assignment or input influence that causes a state transition to occur. The

Ending State is the state to which the object transitions. The Add buttons under Starting
State and Ending State are used to add conjunctive conditions to these states' definitions.

When the OK button is pressed, the behavior definition is added to the object's
description, and is available to the specific tools that are used to query the model.

After adding all the components, behaviors, connections, and ports that are needed to
define a system, the analyst selects the appropriate menu option to invoke one of the
specific tools described below. For example, Verify Behavior (in Figure 3) invokes the
Formal Interconnection Analysis Tool.

Known Ma_lngi

' 1

Power failur_ set_ up cmd pr_esl.or for sail modi...

$afm command received In Ready stahl...

Shuttlr cioH Cmd Ir'ecllv_iid...

_ul_r ol[:,Gn command rocaiv,,d...

Tranlilion from Sa£_ll ha Ready litall,,,

i
_i T_msit/on

-°" ;j
]j.Dutl Acq*ailll'ton cmd reeliv_l...

Slitting State

CPStatl - Riidy

P_r D_llvt_ Input = l.O

14 J.-

Add I Edit]

Triggir

ind Hiril Cmdl • "DahiAcq"

OK]

Figure 4: Component Behavior Definition

#i

194

3.2 The Formal lnterconnection Analysis Tool

FIAT uses a planning algorithm, implemented in Prolog, to chart a path from a (partially)
specified initial state to a specified end state. Steps in the path are either the transfer of a
value along a connection between ports, or the execution of a transition within a
component. The planning algorithm works backwards from the specified end-state until it
arrives at conditions that are specified in the initial state, or are consistent with the specified
initial state.

FIAT is invoked by stating a goal to the planner. The planner then determines how to
arrive at a situation in which this goal is true. A typical goal is of the form

<time-tag>: <goal-condition>

indicating that at the time designated by <time-tag>, the condition <goal-condition> is true.
The time tag can be a numeric expression, a symbolic expression (e.g., containing a
variable t), or one of the keywords START, END. A typical goal condition is A.B.C.D =
V, indicating that the variable/port D within the component A.B.C has the value V.

Backchaining algorithm. The planner responds to a goal in one of the following ways,

which are listed in order of priority:

• Finds a way to show that the goal is established. For example, a goal of the form
START: <goal-condition> is established if <goal-conditrion> is implied by the user-
specified initial conditions. A goal of the form T: <goal-condition> is established if the
planner can show that <goal-condition> is implied by the user-specified initial
conditions and that it is not affected by the user-specified initial event.

• Tries backchaining to create one or more subgoals. Backchaining takes one of two
forms, either through a connection or through a state transition, depending on whether

the goal refers to an input port, a state variable, or an output port.

• Adopts the goal as an additional assumption of the plan. The goal condition must be
consistent with (though not necessarily implied by) the user-specified initial conditions.

Synchronizing and checking consistency of subplans. FIAT processes a list of subgoals
by achieving each subgoal independently. This is not sufficient in general, since the
subplans may interact. Moreover, the subplans may be of different length, requiring that
they be synchronized with each other. In a general planning context, checking the
consistency of an arbitrary set of subplans can be computationally intensive, since one must
consider arbitrary interleavings of the individual steps of the plans. In our domain,
however, it is not necessary to consider arbitrary interleavings. Instead, we synchronize in
one of two ways:

Without time. In this approach, all time tags are of the form START or END. All
transitions and propagations of values along connections are assumed to occur
instantaneously. This approach can only be used for models without feedback. In such
models, given any two components C1 and C2, either C1 is "upstream" from C2 or
vice versa. FIAT can therefore assume that no changes occur to a component C until
all components upstream from C have been processed. When viewed recursively, this

implies that all upstream components have stabilized in their resulting states by the time
C undergoes a transition. Thus, each component undergoes at most one state
transition, from its initial state (START) tO the END state, which results from the
influence of its upstream neighbors.

195

With time. In this approach, every possible state transition and every connection in the
model is annotated with a numeric or symbolic delay value, which indicates the length
of time consumed by the transition or by propagation over the connection. FIAT uses
this information to tag each step of a subplan with its time of occurrence in relation to
the time of the ultimate goal.

Once the subplans are synchronized, FIAT can check their consistency by comparing, at
each step in the plan, the values of the ports and state variables affected at that step. In
general such comparisons are difficult because the values may be symbolic rather than
numeric. For example: the value of a state variable V of a component C at time t may be
specified, in one subplan, as a polynomial expression E1 in the current values at the input
ports 11 and 12 of C. In another subplan, the value of V at time t may be specified as
another polynomial expression E2 in I1 and I2. To verify the consistency of these
subplans, FIAT must establish the equality of E1 and E2. This is a theorem-proving
problem and cannot be solved in general. Thus, depending on the complexity of the
behavior specifications, the plan returned by FIAT may not be a conclusive proof that the
goal state can be reached. Expanding FIAT's theorem-proving power in order to handle
complex behavior specifications is an important goal of our research.

3.3 The Multiple Aspect Simulation Tool

The multiple aspect simulation tool (MAST) is used to "execute" the graphical models.
We use the term "simulation" because typically, in our environment, the diagrams are used
to model physical (electro-mechanical) systems. If, however, the model simply
represented the components of a software system, then the resulting MAST code would be
an implementation of that system.

MAST is based on a generalization of the connection management approach described in
(Lee et al 1990). In that approach, communication between components is achieved
through the operation of a connection manager, which is responsible for visiting each
updated output port of each component and propagating its value to the necessary input
ports (those to which the output is connected). In our generalization of this approach, each
type of connection has its own connection manager. Currently MAST contains connection
managers for the following types of connections:

• Power
• Thermal

•
• Image

Each of these types of connections requires its own form of processing, e.g., the frequency
with which values are updated--hence the use of separate connection managers (and the
name "multiple aspect"). Another deviation from Lee et al is that the connection managers
in MAST are global, i.e., they range over all components in the model. In the original
approach, each subsystem, sub-subsystem, etc. has its own connection manager, which
handles the connections between objects in that subsystem, sub-subsystem, etc. The use
of global managers provides more flexibility in determining the order in which components
should be visited.

The major benefit of using connection managers is that each component in the simulation
remains independent of all other components. The components influence each other strictly
through the flow of information over the connections defined in the graphical model, and
these connections are implemented by means of connection managers. This simplifies the

196

constructionof the simulator from the graphicalmodel: all that needsto be doneis to
generatedatadescriptionsof thecomponentsandtheirconnections,andcodeimplementing
the behavior (i.e., the statetransitions)of eachindividual component. The connection
managercode,which is drivenby thecomponentdescriptions,remainsconstantfrom one
modelto anotherandis simplylinkedin.

Theentiresimulationis drivenby anexecutive,which is anotherfixedblock of codethatis
linked togetherwith theconnectionmanagersandcomponentdefinitions.

3.4 The Diagnostics Inferred from Graphics Tool

DIG generates an expert system to monitor the system described by the graphical model.
The expert system consists of a set of facts and rules in the C-Language Integrated
Production System (CLIPS--see Giarrantano, 1991). The generated rules solve the fault
monitoring problem as three subproblems: Detection, Isolation, and Recovery.

In the generated rules, connections between components of a system are used to isolate a
failed component. The fault is detected when an alarm condition occurs. An example of
such a condition would be a temperature-sensitive object operating outside of its design
temperature range. Figure 1 showed a system in which such a fault may occur. The lens
component is temperature sensitive and will register an alarm when its sensor reads above
or below defined thresholds. In this example the only component involved in the alarm
condition is the lens itself; however, in a more complex system one might also need to
check other components, such as the quality of communication signals being received,
before it is known that an alarm condition exists.

The cause of an alarm could be one of many failed components. DIG uses the connections
between components as well as their known behavior states to identify the component that
has suffered a fault. The values of each component's state variables are considered along
with its current inputs to determine if it is operating according to its defined behavior. Both
influence and behavior information are represented by CLIPS facts in the generated expert
system.

Each alarm condition is represented by a CLIPS rule that uses facts about the state of the
components contributing to the alarm to determine whether the condition exists. When an
alarm is detected, a search begins for the faulted object causing the alarm. This search is
performed by two rules generated for each object. The first rule compares the object's"
current state and inputs to its behavior specification; if these do not match, then the fault is
occurring in that object. If the fault is found, a fact is asserted to begin the recovery phase.
If no fault is detected, the second rule fires and uses the connection information to identify
the next object to be examined. The connection paths form a collection of chains of objects
that either directly or indirectly influence the components contributing to the alarm.

After a fault has been detected and isolated, the recovery phase begins. At present the
recovery phase consists solely of notifying the operator, who can then take corrective
action.

We have recently developed a run-time user interface for the generated expert system,
which uses an animated version of the graphical model to display system status to the user.
The run-time user interface itself is independent of the monitored system, and works in
conjunction with any rule-base generated by DIG (and the corresponding diagram). The
animation works as follows: when an alarm occurs, the component to which the alarm is
attached is highlighted in red. During the ensuing fault isolation process, components that

197

"checkout" arehighlightedin green;acomponentin which thefault hasbeenisolatedis
identified by pointing to it with red arrows. The usercan therefore follow the fault
isolationprocessby observingthe successivehighlighting of componentsin thedisplay.
When thestatecausingthealarmchangesto asatisfactorystate,thehighlightsarecleared
andthecomponentsarerestoredto theirusualdisplaymode.

4 Related Work

Our approach to model-based engineering is closely related to work on executable
specifications in software engineering and to model-based diagnostics in artificial
intelligence. In this section we briefly review these two research areas in so far as they
bear on our work.

4.1 Executable Software Specifications

The trend towards ever higher levels of languages in software engineering has led to the

use of diagrams as executable specifications. Numerous tools developed in the research

community, and a small number that are commercially available, either interpret diagrams
or generate exectuable code on the basis of an implied operational semantacs for the
diagrams. The syntax and semantics of the diagrams varies widely, from dataflow
approaches to state-based representations (see, for example, Zave and Schell, 1986;
Jensen, 1987; Wang, 1988; Pulli, 1989). In our work, both MAST and DIG act as code
generators that are guided by graphical models.

Harel (1992) makes a point quite close to ours by suggesting that such tools are more than
curiosities, or even productivity enhancers. They represent, rather, a significant shift in the
level of abstraction at which engineers can, and should, think about software. Two open
issues in this shift concern the degree to which diagrams can accurately represent the
intended functions of a software system, and the performance levels that can be achieved
with automatically generated code. The first issue--semantic richness---depends on the
modeling approach used, including the way in which diagrams are interpreted
operationally, the amount and kinds of text-based annotations permitted, and (importantly)
the domain of applications for which the software is intended. For example, dataflow
models are amenable to a wide range of operational interpretations (see, for example,
Bewtra et al, 1992); the semantics implied by MAST are well suited to simulation systems,
but may not be appropriate for systems in which messaging plays a more essential role than
dataflow.

The second issue--performance--is one that Harel sees as being progressively addressed
as more work is done in the area of executable specifications. The chief use of such tools

today is for the execution of functional prototypes of a system; the production system can
then be developed with adequate performance by means of more conventional methods.
Harel sees this changing, however, as we become more skillful at generating code from
high-level models.

4.2 Model-Based Diagnostics

Model-based reasoning has become an important alternative to the conventional fault-based
approach to diagnostics which was first demonstrated in the MYCIN system (Hayes-Roth
et al, 1983). The fault-based approach uses a symptom/explanation structure, typically
encoded in rules, to offer possible diagnoses of an observed problem. The limitations of
this approach are now well-known: faults must be explicitly encoded in the knowledge base
in order to be recognized, there is no sound method of representing uncertainty, and the
validity of the knowledge base is difficult to establish.

198

Model-based reasoning employs a more direct representation of the rules that govern a

system's behavior (Struss, 1992). The model-based approach treats the knowledge base as
a description of the structure and behavior of the system being analyzed. Valid behavior is
then characterized in terms of the states of observable elements of the system, and the
relations that must hold between these states. Invalid behavior consists of any violation of
these constraints, rather than being characterized by some finite set of faults identified a

priori.

The model-based approach also admits a theoretically sound representation of uncertainty.
The field of causal modeling applies Bayesian probability to the causal relationships
between aspects of a system's state (Lemmer and Kyburg, 1992). The distinction between
this and the fault-based approach is subtle but important. The fault-based approach draws a
direct relationship between sets of symptoms and possible diagnoses. Causal modeling
relates partial observations of a system's state to possible extended descriptions of the
system's state. The range of possible explanations is much wider than in the fault-based
approach, and is less susceptible to the biases that can easily enter unnoticed into a
symptom/explanation structure.

Although the DIG tool generates a knowledge base in the form of production rules, the

form of reasoning performed by these rules is clearly model-based. 1 There is no explicitly
defined fault set--only a description of admissible and inadmissible states of the system.
The rules are used to isolate the problem on the basis of the known relationships between
components.

The open-endedness of model-based diagnostics has an analog in our approach to model-
based engineering. As described in Section 2, we view the process of engineering as a
process of creating, querying, and modifying models. In this context, open-endedness
means that the questions that can be answered are not limited to some pre-defined set. This
is a significant departure from the common practice in software engineering of using
"canned" methodologies, which in essence prescribe a certain set of questions to be
answered about a system under development. The model-based approach to system and
software engineering provides a basis for adapting a method to the needs and constraints of
a given project. Adaptation is achieved by tailoring the questions that will be asked about
the system models. Of course, changing the questions may require enhancing or
otherwise changing the models. By placing the emphasis on querying models, however,
our approach encourages a scientific mindset in developing systems, as opposed to a
mechanical "cookbook" approach.

5. Future Directions

Currently the KFP environment is a stand-alone set of tools for model-based graphical
reasoning. In the coming year this environment will be integrated into a version of the
Generic Spacecraft Analyst Assistant (GenSAA) workbench. GenSAA is designed to
support rapid development and application of real-time expert systems in the Mission
Operations domain. This experimental integration of the two environemnts (KFP and
GenSAA) will provide an opportunity to more fully evaluate the anticipated benefits that
will be derived from embedding a model-based graphical reasoning capability in a
workbench for the real-time development of expert systems.

1 We make this observation because model-based reasoning is often contrasted with rule-based reasoning.

199

References

Giarrantano, J., 1991. CLIPS Reference Manual. NASA Johnson Space Center,
Houston, TX.

Harel, D., 1992. Biting the silver bullet: Toward a brighter future for system development.
IEEE Computer, January 1992.

Hayes-Roth, F., Waterman, D., and Lenat, D., eds., 1983. Building Expert Systems.
Addison-Wesley Publishing Company.

Jensen, K., 1987. Computer tools for construction, modification, and analysis of Peu'i
nets. Advances in Petri Nets, Part H, ed. W. Brauer, W. Reisig, and G. Rozenberg.
Lecture Notes in Computer Science, Vol. 255, pages 4-19. Springer-Verlag, New York,
NY.

Lee, K. et. al., 1990. An OOD paradigm for flight simulators, 2nd edition. Technical
Report of the Software Engineering Institute, Carnegie Mellon University, Pittsburgh.

Lemmer, J. and Kyburg, H., 1992. An Investigation of lndependent Causality as a Basis
for Uncertain Prediction and Inference. Internal memorandum, CTA Incorporated, Rome,
NY, November 16, 1992.

Montalvo, F., 1986. Diagram understanding: associating symbolic descriptions with
images. IEEE Computer Society Workshop on Visual Languages, held in Dallas, TX, June
25-27, 1986. 1EEE Computer Society Press, pages 4-11.

Musen, M., Fagan, L., Shortliffe, E., 1986. Graphical specification of procedural
knowledge for an expert system. IEEE Computer Society Workshop on Visual Languages,
held in Dallas, TX on June 25-27, 1986. IEEE Computer Society Press, pages 167-178.

Parnas, D., Asmis, G., and Madey, J., 1990. Assesment of safety-critical software.
Technical Report 90-295, ISSN 0836-0227. Telecommunications Research Institute of
Ontario. Queens University, Kingston, Ontario.

Pulli, P., 1989. Pattern-directed real-time execution of SA/RT specifications. Proceedings
of the Euromicro Workshop on Real Time, June 1989. IEEE Computer Society Press, Los
Alamitos, CA.

Struss, P., 1992. Knowledge-based diagnosis - an important challenge and touchstone for
AI. Proceedings of the lOth European Conference on Artificial Intelligence, pages 863-
874. John Wiley and Sons, Chichester, England.

Truszkowski, W., Paterra, F., and Bailin, S., 1992. Knowledge from pictures.
Technology 2002 Conference, December 1-3, 1992, Baltimore, MD. Proceedings to be
published by NASA in 1993.

Wang, Y., 1988. A distributed specification model and its prototyping. IEEE
Transactions on Software Engineering, Vol. 14, No. 8, pages 1090-1097. August 1988.

Zave, P. and Schell, W., 1986. Salient features of an executable specification language
and its environment. IEEE Transactions on Software Engineering, Vol. 12, No. 2, pages
312-325. February 1986.

200

